Pulsed ultrasound enhances the delivery of nitric oxide from bubble liposomes to ex vivo porcine carotid tissue

نویسندگان

  • JT Sutton
  • JL Raymond
  • MC Verleye
  • GJ Pyne-Geithman
  • CK Holland
چکیده

Ultrasound-mediated drug delivery is a novel technique for enhancing the penetration of drugs into diseased tissue beds noninvasively. By encapsulating drugs into microsized and nanosized liposomes, the therapeutic can be shielded from degradation within the vasculature until delivery to a target site by ultrasound exposure. Traditional in vitro or ex vivo techniques to quantify this delivery profile include optical approaches, cell culture, and electrophysiology. Here, we demonstrate an approach to characterize the degree of nitric oxide (NO) delivery to porcine carotid tissue by direct measurement of ex vivo vascular tone. An ex vivo perfusion model was adapted to assess ultrasound-mediated delivery of NO. This potent vasodilator was coencapsulated with inert octafluoropropane gas to produce acoustically active bubble liposomes. Porcine carotid arteries were excised post mortem and mounted in a physiologic buffer solution. Vascular tone was assessed in real time by coupling the artery to an isometric force transducer. NO-loaded bubble liposomes were infused into the lumen of the artery, which was exposed to 1 MHz pulsed ultrasound at a peak-to-peak acoustic pressure amplitude of 0.34 MPa. Acoustic cavitation emissions were monitored passively. Changes in vascular tone were measured and compared with control and sham NO bubble liposome exposures. Our results demonstrate that ultrasound-triggered NO release from bubble liposomes induces potent vasorelaxation within porcine carotid arteries (maximal relaxation 31%± 8%), which was significantly stronger than vasorelaxation due to NO release from bubble liposomes in the absence of ultrasound (maximal relaxation 7%± 3%), and comparable with relaxation due to 12 μM sodium nitroprusside infusions (maximal relaxation 32%± 3%). This approach is a valuable mechanistic tool for assessing the extent of drug release and delivery to the vasculature caused by ultrasound.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide-loaded echogenic liposomes for treatment of vasospasm following subarachnoid hemorrhage

Delayed cerebral vasospasm following subarachnoid hemorrhage causes severe ischemic neurologic deficits leading to permanent neurologic dysfunction or death. Reduced intravascular and perivascular nitric oxide (NO) availability is a primary pathophysiology of cerebral vasospasm. In this study, we evaluated NO-loaded echogenic liposomes (NO-ELIP) for ultrasound-facilitated NO delivery to produce...

متن کامل

Effective gene delivery with novel liposomal bubbles and ultrasonic destruction technology.

From the viewpoint of safety, non-viral vector systems represent an attractive gene delivery system for gene therapy. However, the transfection efficiency of non-viral vectors in vivo is generally very low. Previously, it was reported that microbubbles, utilized as imaging agents for diagnostic echocardiography, could promote gene delivery into cells when combined with ultrasound exposure. We t...

متن کامل

Gene delivery by combination of novel liposomal bubbles with perfluoropropane and ultrasound.

Microbubbles and ultrasound have recently been investigated with a view to improving the transfection efficiency of non-viral gene delivery systems. However, microbubbles are unstable and their targeting ability is insufficient for clinical use. To circumvent these problems, we developed novel polyethyleneglycol (PEG) modified liposomes (Bubble liposomes) containing perfluoropropane, which is a...

متن کامل

Docetaxel delivery using folate-targeted liposomes: in vitro and in vivo studies

Objective(s): Folate-targeted liposomes have been well considered in folate receptor (FR) overexpressing cells including MCF-7 and 4T1 cells in vitro and in vivo. The objective of this study is to design an optimum folate targeted liposomal formulations which show the best liposome cell uptake to tumor cells.Material and Methods: In this study, we prepared and characterized different targ...

متن کامل

Ultrasonically targeted delivery into endothelial and smooth muscle cells in ex vivo arteries.

This study tested the hypothesis that ultrasound can target intracellular uptake of drugs into vascular endothelial cells (ECs) at low to intermediate energy and into smooth muscle cells (SMCs) at high energy. Ultrasound-enhanced delivery has been shown to enhance and target intracellular drug and gene delivery in the vasculature to treat cardiovascular disease, but quantitative studies of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014